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Ordering and topological defects 
in social wasps’ nests
Shivani Krishna1*, Apoorva Gopinath1 & Somendra M. Bhattacharjee2

Social insects have evolved a variety of architectural formations. Bees and wasps are well known for 
their ability to achieve compact structures by building hexagonal cells. Polistes wattii, an open nesting 
paper wasp species, builds planar hexagonal structures. Here, using the pair correlation function 
approach, we show that their nests exhibit short-range hexagonal order (no long-range order) akin to 
amorphous materials. Hexagonal orientational order was well preserved globally. We also show the 
presence of topological defects such as dislocations (pentagon-heptagon disclination pairs) and Stone-
Wales quadrupoles, and discuss how these defects were organised in the nest, thereby restoring order. 
Furthermore, we suggest the possible role of such defects in shaping nesting architectures of other 
social insect species.

Animal nests and their architecture are crucial for the development of the young, protection from predators, 
and storage of resources. The diversity and complexity in architecture signify how these functions are fulfilled 
in diverse habitats and environmental conditions. Such complexity is exemplified by the nests of social insects 
(ants, bees, termites, and wasps) owing to their ability to use or modify the surroundings, and create ordered 
and plastic  structures1–3. These nests have captivated mathematicians and ecologists alike for their structural 
complexity and the mechanisms behind the coordinated  building4–7. How do multiple individuals in a group or 
a colony come together to construct these tiled layouts? The principle of stigmergy explains this as the formation 
of patterns by  emergence8, including self-organisation and self-assembly  mechanisms9,10. In most species, the 
construction rules depend on environmental (e.g., humidity, soil moisture) or pheromone  gradients1,11. In this 
context, the relative importance of self-organised12,13 vs template-based interactions has been examined, and 
current evidence points towards architectural mechanisms being an interactive effect of both these  interactions14. 
It is paramount to place these mechanisms in the context of behavioural and cognitive processes to understand 
nest construction comprehensively. The repertoires required for complex nest architectures are often character-
ised by simplified clusters of direct steps. However, the processes involved in planning construction in various 
environmental conditions, detecting errors and their remediation, working around novel obstructions, etc., 
require substantial cognitive abilities that outwit simple  algorithms15.

In bees and wasps, cells within the nest are usually circular or hexagonal. Hexagonal tiling provides a com-
pact structure and is proven to cover a planar region with regular units of equal area whilst minimising the 
total perimeter (honeycomb  conjecture16). Such optimal utilisation of space and energy has been proposed as 
the significant selection pressure for shaping these  structures15,17–19. Honeybees use wax to shape their cells, 
while most wasp species use either mud or fibrous materials of plant origin for construction. Though the cells 
are hexagonal in both cases, the construction materials possess strikingly distinct properties. Therefore, the 
underlying processes could be different. Construction of bees’ wax-based cells is postulated to begin as an array 
of circles (laid over packed cylinders as a base) that are modified to rounded hexagons purely by mechanical/
thermodynamic  means20,21. However, experimental work from nests of European honeybees suggests that bees 
actively construct hexagonal cells by handling the wax and controlling its  temperature22. Given the plasticity of 
wax, any disruptions to tiling in these structures can be rectified, thereby reducing the possibility of overall defects 
in the nests. Hence the legend of honeycomb ordering. On the other hand, nests made up of plant fibres such as 
those of paper wasps are unlikely to follow similar modes of construction. The reduced plasticity makes them 
interesting as ordered physical systems prone to topological defects. A topological defect in systems of broken 
symmetry, like crystals, magnets, liquid crystals, etc., is defined as a disruption of order throughout the system 
in a way that defies restoration via any continuous  deformation23,24. In contrast, defects such as vacancies, hilly 
terrain in a flat land, etc., are geometric defects as they affect order locally in their neighbourhood without any 
signature far away from them. A key characteristic of topological defects is that they cannot be repaired by local 
rearrangements alone but instead require changes to the system globally. Geometric defects can be amended by 
making changes locally at the scale of basic elements or  constituents25. Here, we refer to topological defects as 
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those that occur and affect at length scales beyond a single unit/element, such as a single cell within a nest. The 
emergence and evolution of such topological defects in paper wasps’ nests have never been studied. Some of the 
most common topological defects in crystals and liquid crystals manifest as disclinations and  dislocations26,27. 
Examples of such disclinations have been shown in living systems such as protein coats of  viruses28 and insect 
corneal  nanostructures29, where insertion of pentagons into an array of packed hexagons results in Gaussian 
curvature and breaks the sixfold rotational symmetry. Similarly, the Stone-Wales defect, characterised by two 
pentagons and two  heptagons30, is a well-known defect in graphene, fullerene, and carbon  nanotubes31,32.

Paper wasps of Polistes genus build nests hanging from one or more stalks. The nest itself is made up of open 
hexagonal cells. Variations in nesting architectures within paper wasps have been attributed to selection pressures 
such as predation from ants or flying insects, insulation from heat, and economic use of building  material18,33–36. 
The diversity of nest forms in paper wasps and their growth have been elegantly explained by a simple set of 
rules by Karsai and Pénzes37. The model suggests that multiple forms could be built by changing the weight-
age assigned to different parts of the nest. However, by construction, these models describe regular hexagonal 
structures only. The likelihood of these models explaining changes to regular hexagonal tiling or within nest 
changes to order is small. In this paper, analysing the nesting architecture of paper wasps (Polistes wattii), we 
ask the following questions: 

(a) What is the nature of ordering (i.e., short-range vs long-range) and spatial arrangement of cells within and 
between the nests? In the current context, order describes the regularity in the tiling of the cells within 
the nests. Short-range order (SRO) represents the arrangements of nearest neighbours in the nest, while 
long-range order (LRO) represents the regularity over a longer distance. More quantitatively, a nest is said 
to have long-range order if there is a nonzero probability of finding the corners of two cells on the same 
regular lattice, even for large separations between the cells.

(b) What are the topological defects found in theses nests?

Methods
The study was conducted within the campus of Ashoka University, Sonepat, India (28.9457◦ N, 77.1021◦ E) 
located at an altitude of 224 m. The maximum temperature in summers is 45–-47◦ C, and the lowest temperature 
in winters is around 4–6◦ C. Wasps of the genus Polistes have a widespread distribution and are a well-studied 
example for the evolution of sociality and dominance hierarchies in insects. It is a primitive and speciose genus 
with more than 200  species38. P.wattii is known to be distributed across central and South  Asia39. They are inac-
tive during the winter, and nest building begins once they emerge from hibernation. The construction of nests 
often lasts till late summer. In our study, all the analysed P.wattii nests were from anthropogenic habitats. Nesting 
height was typically within the range of 5-15 m. Images of nests were taken in the summer of 2020 and 2021. 
Adult nests that were fully constructed and completed the season were considered for analysis (typically with at 
least 50 cells, Figure S4). These nests were photographed with a reference scale. Images were further analysed by 
subtracting the background and binarisation using  ImageJ40. The positions of all the individual vertices (corners 
shared by at least three cells) were marked on the images, and their x, y coordinates were exported for subsequent 
analysis. Here, we have taken the structure to be planar (see Results and Discussion for details). To avoid the 
effect of boundary which includes incomplete cells, a few layers of vertices along the edges were excluded. Apart 
from these, a few cells with cylindrical projections where identifying the underlying vertices was difficult were 
excluded from the final analyses. Overall, 25 nests were used to characterise the degree of ordering. The presence 
of topological defects was identified by inspecting the number of vertices for the cells within 35 different nests. 
We characterised the defects by identifying their basic features (number of vertices and neighbouring cells) and 
calculating the internal angles of the first neighbouring hexagonal layer from coordinates. For a region without 
defects, we would expect these angles to be close to 120◦.

To quantify ordering and analyse the spatial distribution of cells, we used pair correlation function g(r) 
(henceforth PCF) based on Ripley’s K function derivative method in the spatstat package with default smoothing 
 parameter41. The approach relies on the probability of finding a pair of vertices separated by a distance r. This 
results in an average representation of the local spatial neighbourhood at a distance r from any given vertex. 
PCF of a regular lattice exhibits sharp peaks at the lattice spacing distances (resolved using a lower smoothing 
parameter than the default value). Such sharp peaks indicate perfect ordering. On the other hand, an amorphous 
structure will show some reduced degree of order; in particular, it would have g(r) approaching 1 for large values 
of r. The limiting value of 1 indicates no correlation between the positions of vertices when they are far apart. In 
a PCF, the peak heights are generally related to the number of neighbours. The first two peaks were discernible 
in nests of different sizes, allowing us to focus on the location and width of these peaks for each of the nests. The 
following function consisting of two Gaussians with amplitudes a1, a2 has been used to fit the first two peaks of 
the g(r)-vs-r curve for each nest,

where r1, s1 represent the location and the width of the first peak, and r2, s2 of the second peak. We also calculated 
the coefficient of variation (CV) of location and width for the first two peaks to quantify the extent of variation 
in order between nests.

We measured the individual cell areas and compared the variation between and within the analysed nests. We 
also calculated the nearest neighbour distances or bond lengths, i.e., distances between vertices (henceforth wall 
lengths). Based on the the fitted values of Eq. (1), the wall length would be in the range r1 ± 2s1 . Information of 
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translational ordering is given by the PCF, and to obtain the orientational order, we defined cell-orientational 
order in analogy with bond-orientational order in liquids. Cell-orientational order parameter is a measure of 
the geometrical arrangement of the vertices of a given cell around its cell  centre42,43. Cell-orientational order 
parameter ψn is given by a complex number defined at each cell centre as,

where Nj is the number of vertices of cell j centered at Xj , θjk represents the angle between the line joining vertex k 
to the centre and the chosen x-axis, and n is an index for orientational ordering (Fig. 1). For hexagonal ordering, 
we choose n = 6 . Note that ψn neither depends on the vertex numbering scheme nor the size of the hexagon. 
As a complex number, ψn = |ψn|e

iθ lies on or within the unit circle in the complex plane, and therefore, ψn(Xj) 
can be represented graphically by a vector at an angle θ with the x-axis at the cell centre Xj . The average 〈ψn〉 of 
ψn(Xj) over a large number of hexagons lies in the range 0 ≤ |�ψn�| ≤ 1 with the two extreme values representing 
a random orientational arrangement ( �ψ6� = 0 ) and a perfect hexagonal ordering ( �ψ6� = 1 ). We calculated the 
cell-orientational order parameter for a simulated set of random central angles to study the decay of |�ψ6�| from 
the perfect value of 1 (note that �ψ6� = 0 corresponds to independent hexagons which do not form a regular 
lattice; details in Supplementary Information). Analyses were performed by using Fortran (https://gcc.gnu.org) 
and R  software44.

Results and discussion
Nature of ordering and spatial arrangement of cells in the nests. The number of cells in the ana-
lysed nests ranged between 50 and 740. For each nest, we characterised the nature of ordering by calculating 
pair correlation function for the vertices. For a regular hexagonal lattice, sharp peaks (in principle, δ-function) 
occur at distances corresponding to radii of different shells indicating the presence of both short and long-range 
 order45. As shown in Fig. 2, for any vertex on the hexagonal lattice, the first, second, and third neighbours lie 
on circular shells and the first 3 PCF peaks reflect this regularity. We found that there is a substantial overlap 
between the first and second peaks of a regular hexagonal lattice and those of a typical nest. As r increases, this 
overlap disappears. This pattern of the PCF illustrates the SRO in the structure of nests. The presence of a peak 
in a PCF confirms that any given vertex would have neighbouring vertices at distances provided by the peak 
position. This is an example of SRO. Moreover, the decaying envelope of the PCF to g(r) = 1 is a signature of the 
absence of LRO. The proximity of the third peak to the second peak is an inherent characteristic of a hexagonal 
lattice, suggesting that the two shells are closeby. However, the second shell and third shell are not resolved in 
the case of nests, due to broad wall-length distribution. The absence of sharp peaks and the missing proximity 
of second and third shells are signatures of deviation from regularity. Indeed, the broad peaks in the nest PCF 
curves indicate heterogeneity of cell sizes that impairs ordering over long distances. Therefore, we conclude that 
similar to amorphous structures, nests exhibit SRO but no LRO.

The PCF curves of nests shown in Fig. 3a have been normalised such that the first peak is at r = 1 (non-
normalised individual nests’ PCFs are shown in Supplementary Information, Figure S1). When variations in 
translational order of nests were analysed, the nest-to-nest variation was found to be restricted to larger r values. 
This is further corroborated by the low variance values (coefficient of variation, CV) of location and width of the 
first peak compared to the second peak (Fig. 3b,c,d).

The structural features were analysed by characterising the distribution of wall lengths, cell areas, and cell 
orientational order (Fig. 4). Figure 4a depicts the extent of variation in wall lengths between the different nests. 
The lengths varied within the range of 0.1 and 0.9 cm, with a median value of 0.3 cm. The cell areas were in the 
range of 0.07 to 0.85 sq.cm (median= 0.25 sq.cm, Fig. 4b). The distribution of cell wall-lengths also fits well with 
the values obtained from the Gaussian fit of the first peak of the PCF. Furthermore, we analysed if the degree 
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Figure 1.  Cell-orientation order parameter (Eq. 2). The angle θjk is measured from an arbitrarily chosen x-axis 
through the centre as shown in (a). For a regular hexagon with inner angles at 2π/3 , the orientation in (a) has 
ψn = 1 while in (b) ψn = −1 . In general, ψn is orientation-dependent with |ψn| less than or equal to 1. For 
regular hexagons, individual ψn lies on the unit circle. The six-fold symmetry of a regular hexagon is preserved 
by ψn as it returns to its value under a π/3 rotation of the hexagon around its centre.
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Figure 2.  Pair correlation function as a function of r, i.e., the distance between vertices in cm. The two curves 
depict a representative nest and a regular hexagonal lattice. The regular hexagonal lattice has been constructed 
with a wall length equal to the average wall length of the representative nest. A schematic on the top shows a 
regular hexagonal lattice and the vertices in the first, second, and third shells around any one vertex. Each vertex 
is connected to three other vertices in the first shell.
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Figure 3.  (a) Pair correlation function of vertices from 10 randomly chosen nests, showing a significant overlap 
around the first and second peaks; beyond the third peak, the positioning of vertices approaches random 
distribution (approaching 1). The x-axis is scaled ( r/r0 ) such that the first peak is at the same x-value for all 
nests. Each coloured line represents one nest. Distribution of (b) locations and (c) widths obtained by Gaussian 
approximation of first and second peaks of the pair correlation function of 25 nests. (d) Relative difference in 
coefficient of variation (CV) of locations and widths of first and second peaks. Each CV value depicts variation 
within the nest.
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of deviation was greater within the nest or between the nests. Percent CV values of cell areas ranged between 
13 and 28 while the wall-lengths varied from 44 to 58%. The wall-length variation was greater within the nests 
than between the nests. Cell wall length distributions were analysed for randomly chosen cells from central 
and peripheral regions of wasp nests to test the assumption of planarity of the nest. For a curved surface, one 
expects the wall lengths of peripheral cells to be different from those in the central region. These distributions 
were found to overlap (Fig. S5). Therefore, we conclude that the curvature-induced systematic distortion (if any) 
is indistinguishable from the wall-length distribution of the cells.

Our analysis suggests that the orientation of the cells is fairly preserved and aligns well with the nearest neigh-
bours (Fig.  4c, d). The orientational order parameter varied between the nests in the range of 0.1 and 1, with a 
median value of 0.85. Significant overlap in cell orientational order parameter distributions of the nests suggests 
that the presence of orientational order is true across the nests (Fig. 4c). Percent CV values varied between 16 
and 31, indicating that variation within nests in cell orientational order was smaller than the variation in wall 
lengths. Compared to the case of a single cell with random internal lengths (see Supplementary Information), the 
probability distribution of 〈ψ6〉 in Fig. 4c is wider. We attribute this to the cooperative effect of building a compact 
nest and yet becoming amorphous-like in the large scale limit. A well-studied example of such cooperative-effect 
induced broadening is the probability distribution of magnetism as one approaches the Curie temperature of a 
 magnet46. Taken together, the pair correlation function and distribution of cell orientational order parameters 
suggest the presence of short-range hexagonal order and an overall orientational order even though there is no 
long-range order akin to amorphous materials.

Topological defects. Hexagonal structures are prone to defects that emerge in a variety of ways. In the 
analysed nests, we show the presence of topological defects in the form of non-hexagonal cells. Akin to defects 
in most materials, these were found to occur at low frequency (20% of the nests). In few nests of P. annularis47, 
non-hexagonal cells were reported to induce the required curvature of nests. However, the presence of octagons 
and higher-order defects has not been reported.

Defects such as one pentagon or one heptagon amidst hexagons disrupt the planarity of a honeycomb struc-
ture as shown in Figure 5a,b48. If structural disorders such as topological defects are left uncorrected, they 
affect the overall planarity of the nest. The missing link of a pentagon in a hexagonal net necessarily requires 
the removal of a wedge of hexagons, producing a cone-like structure as shown in Fig. 5a. Similarly, an opposite 
curvature can be produced by a single heptagon (Fig. 5b) with an extra link that requires the insertion of a wedge. 
As these curvatures cannot be ironed out, these are topological defects called disclinations that tend to disrupt 
the orientational order of the lattice. A pair of the two opposite types do not cancel each other but instead carry 
with them a line defect, which is called a dislocation line. This dislocation line consists of an extra array of hex-
agonal cells (Fig. 5c). Furthermore, a dislocation is characterised by drawing a loop in a region without defects 
and comparing it with a similar loop that encloses it. The steps required to close the loop are characteristic of 
the defect and independent of the size and shape of the loop. This topological invariant called Burgers vector is 
shown in Fig. 5c.
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Figure 4.  Frequency distribution of (a) cell wall lengths, (b) cell areas, and (c) cell orientational order 
parameter (dimensionless), depicting variation between and within the nests. (d) Heat map showing z = Im ψ6 , 
the imaginary part of ψ6 of cell orientational order parameter of a representative nest (x,y in cm indicate centre 
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Figures 6 and 7 show the distinct types of such defects found within the analysed nests. Stone-Wales defect 
comprises of two pentagons and two heptagons (Fig. 6b), which typically arises by a simple 90◦ rotation of 
the bond (wall) between two hexagons. As a pentagon-heptagon pair is a dipole, Stone-Wales defect becomes 
equivalent to a disclination quadrupole (two oppositely oriented dipoles). These nomenclatures are analogous 
to those of electric charges. Though a local fault in construction can produce a Stone-Wales defect(Fig. 6b), it is 
still topological in nature as the distortion propagates to the boundary. Such topological defects are known to 
occur commonly in graphite and  graphene49. For cells with defects that occur in pairs or as groups, we measured 
the angles of the neighbouring vertices for upto one shell of nearest neighbours. For a regular hexagonal lat-
tice, these angles would be 120◦ , and for the nest without defects, we found that a set of randomly chosen cells 
subtended angles that ranged between 90◦ and 140◦ . However, hexagonal cells adjoining the defect pairs such as 
pentagon-heptagon showed angles that range from 99◦ to 151◦ , which differed from both the regular hexagonal 
lattice as well as hexagonal cells in the nest. Figure 7a depicts a defect where an octagon is embedded within three 
pentagons, four hexagons, and a heptagon. This is obtained by a 90◦ rotation of the wall between three hexagons 
and a heptagon. Another defect that was observed was an octagon with two pentagons on either side (Fig. 7). 
This complex changes to a four-hexagon configuration by a wall addition followed by a split (change in the wall 

Figure 5.  Illustration of emergent structure that deviates from planarity with the insertion of (a) a pentagon 
or (b) a heptagon (shading as a guide to the eye). (c) A disclination pair is indicated on a wasp nest. A view of 
parallel lines encompassing an additional hexagonal layer as they pass through this pair, thereby leaving a scar 
on the lattice (dislocation line). A Burgers vector obtained from a loop enclosing the dislocation is a topological 
invariant. A loop not enclosing a defect is shown on the top right. ê1 and ê2 are the basis vectors.

Figure 6.  Schematic representation of (a) a pentagon and a heptagon amidst hexagons (dipole), and (b) 
Stone-Wales defect (pentagon-heptagon quadrupole) or a dislocation dipole. The arrow points towards the 
representation of hexagons when these defects are fixed. The possible modifications to the wall are indicated 
above the arrow. Bottom panels show their outline in the wasp nests.
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angles of the central wall). Such extended defects are equivalent to pairs of dislocations, which do not have any 
associated Burgers vector. These arise in scenarios where wasp(s) have constructed the outline of cells, and the 
internal walls were added subsequently. All the above-described defects were found to maintain the three-point 
vertices (vertex connected by three walls).

A dislocation for a two-dimensional system consists of a pentagon-heptagon pair (i.e., a pair of opposite discli-
nations). The presence of such a defect necessarily entails an extra row of hexagons that vitiates the translational 
order at large distances but not the bond-orientational order. Consequently, a proliferation of dislocations can 
produce a state of bond-orientational order without any translational order (a distinct phase of matter well known 
as the hexatic phase). A liquid is formed when the dislocations break into disclinations (independent pentagons 
and heptagons)50, which destroy the residual bond-orientational order. For instance, when these defects are 
induced by thermal energy, one sees a two-step melting process of a two dimensional crystal. In colloidal crystals, 
dislocations or disclination dominated phases can be produced by external agencies like laser. In short, topologi-
cal defects significantly influence a system’s behavior. In this spirit, the disposition of the two-dimensional nests 
is ultimately determined by the nature of the individual cells and the topological defects, which are generated 
by the construction rules adopted by the wasps.

While pentagon-heptagon pairs were found to occur in nests, the configuration where hexagons separate a 
pentagon and a heptagon was never observed in our dataset. Interestingly, some of the described defects and their 
properties are utilised by honeybees to attain curvature as well as to merge cells of different  sizes51,52. Cells of dif-
ferent sizes are routinely observed in honeycombs as larvae of drones and workers are of different sizes. Retaining 
order with cells of different sizes that are being built independently by different individuals poses a challenge, 
and the honeybees counter this by local sensing and introducing non-hexagonal cells where  required52–54. The 
introduction of a pentagon or a heptagon adjacent to each other is only possible by a regular set of local inspec-
tions carried out by wasps to identify possible deviations from hexagonality. There are two alternatives to explain 
the emergence of these defects that require further investigations. These alternatives are as follows: a) As the 
angle of a regular heptagon is 128.5◦ is closer to that of a regular hexagon than a pentagon whose angle is 105◦ , 
heptagons have arisen first, which are then fixed immediately by adding a pentagon, and b) the higher number of 
pentagons overall suggests that moulding cells with lesser material could have erroneously resulted in pentagons 
that were subsequently fixed by inserting a heptagon. It is likely that experience and learning play a crucial role 
in repair processes. Experiments in P. fuscatus have shown the presence of an elaborate building programme that 
is beyond a set of linear steps, including repairing cell walls when damaged, adding pulp, and strengthening the 
stalk when required, which is done by multiple  inspections55. This suggests that deviations from 6-sidedness are 
also possibly assessed via such inspections. However, it is unknown if these inspections involve identifying the 
number of vertices, measuring the internal angles or by Burgers vector.

Conclusion
Our results suggest that the nests of Polistes wattii show orientational order without any translational long-range 
order in the placement of the hexagonal cells on a planar surface. However, the ordering is well preserved in the 
immediate neighborhood of the cells (short-range order). Furthermore, topological defects were identified in 
the form of dislocations and disclinations (non-hexagonal cells) in the nests. We showed that these defects were 
organised such that the planarity of the nests was maintained. We used the approach of pair correlation function 
and topological methods to analyse these structural features of wasp nests.

Two key features that were never violated in the nests were a) convexity of individual cells and b) planar 
global structure. We postulate that wasps conduct systematic localised inspections, detect changes in local sym-
metry or order, and make changes to the adjoining cells to restore order. Going further, we intend to test the 
role of cell size heterogeneity on the emergence of topological defects and the relationship between the decay 

Figure 7.  Schematic representation of (a) an octagon surrounded by a heptagon and three pentagons, and 
(b) an octagon between two pentagons. The arrows point towards the representations of hexagons when these 
defects are fixed. The possible modifications to the wall are indicated above the arrow. Bottom panels show their 
outline in the wasp nests.
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length of pair correlation function with the size of the nests. Future studies could place the nests in captivity and 
characterise the behaviours that precede and succeed the construction of cells around the defects. The introduc-
tion of defects experimentally in such captive nests would help understand the response of individuals and the 
group. While our study establishes the presence and repair of the defects, it is unclear if all the wasps equally 
participate in this process or certain keystone individuals are efficient at inspection and repair processes. These 
additional studies would therefore allow us to understand the behavioral mechanisms encompassing the repair 
of topological defects.

Data availability
The datasets used in the current study will be available from the corresponding author on request.
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