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Localisation and Delocalisation for a Simple
Quantum Wave Guide with Randomness

Werner Kirsch and M. Krishna

Abstract. In this paper, we consider Schrödinger operators on M × Z
d2 ,

with M = {M1, . . . , M2}
d1 (‘quantum wave guides’) with a ‘Γ-trimmed’

random potential, namely a potential which vanishes outside a subset
Γ which is periodic with respect to a sub-lattice. We prove that (under
appropriate assumptions) for strong disorder these operators have pure

point spectrum outside the set Σ0 = σ(H0,Γc) where H0,Γc is the free
(discrete) Laplacian on the complement Γc of Γ. We also prove that the
operators have some absolutely continuous spectrum in an energy region
E ⊂ Σ0. Consequently, there is a mobility edge for such models. We
also consider the case −M1 = M2 = ∞, i.e. Γ-trimmed operators on
Z

d = Z
d1 × Z

d2 . Again, we prove localisation outside Σ0 by showing
exponential decay of the Green function GE+iη(x, y) uniformly in η >

0. For all energies E ∈ E we prove that the Green’s function GE+iη

is not (uniformly) in ℓ1 as η approaches 0. This implies that neither
the fractional moment method nor multi-scale analysis can be applied
here.

1. Introduction

Quantum waveguides are quantum mechanical structures which are confined in
certain spaces dimensions, but unconfined in others. The last decades showed
a growing interest in these systems in the mathematical literature. The book
[8] by Exner and Kovař́ık gives an overview on the state of art (as of 2015) as
well as an extensive list of references on waveguides.

A quantum waveguide with the simplest geometry is given by a particle
in a (k-dimensional) strip in Zk+m or Rk+m. Other examples are tubes or wires
which are bended or twisted (see, for example, the discussion in Krejčǐŕık [21]).
Of particular interest are waveguides with randomness either in the geometry
of the system or in the potential energy.
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In this paper, we consider waveguides with a simple geometry, namely on
a strip in Zd, for example, on

X = {M1p,M1p + 1 . . . , M2p − 1}d1 × Zd2 , d1 + d2 = d, p ≥ 2 , (1)

with a random potential Vω. The potential we consider is ‘sporadic’ or ‘Γ-
trimmed’, in the sense that Vω(x) = 0 for lattice points x �∈ Γ. Here, Γ is
an L-periodic subset of the strip for a sub lattice L. In example (1), we may
choose, for instance,

Γ = {M1p, (M1 + 1)p, . . . , (M2 − 1)p}d1 × Zd2 (2)

For x ∈ Γ, the potentials are independent and identically distributed. Random
operators Hω with such potentials are called ‘Γ-trimmed’.

Spectral theory for trimmed Anderson models (i.e. on Zd) was done in the
PhD-thesis of Obermeit [23] and the papers of Rojas-Molina [24], Elgart-Klein
[5], Elgart-Sodin [6] and Kirsch-Krishna [16]. The present paper was inspired
by [6].

We show that models as in (1), (2) have a mobility edge (or rather mobil-
ity edges). The measure theoretical nature of the spectrum depends on the
energy region. More precisely, denote by H0,Γc the free (discrete) Laplacian
on the set Γc. Outside of the spectrum Σ0 := σ(H0,Γc) the operator Hω has
dense point spectrum for high enough disorder. On the other hand, we prove
that Hω has some absolutely continuous spectrum inside σ(H0,Γc) regardless
of the strength (or even existence) of the randomness.

The absolutely continuous spectrum comes from the existence of canon-
ical extended states. More precisely, in an energy region inside Σ0 we find
periodic solutions of the free Schrödinger equation which vanish on the set Γ.
Hence, these functions solve the Schrödinger equation with a random (in fact,
with an arbitrary) potential on Γ as well.

Kotani and Simon consider random operators on a strip [20] with d2 = 1.
They give abstract conditions for absolutely continuous spectrum in terms of
Lyapunov exponents. The examples for absolutely continuous spectrum they
give are deterministic potentials. Their method does not extend to d2 > 1.

To prove pure point spectrum we employ the multiscale analysis (see, for
example, Dreifus-Klein [27] or Disertori et.al. [4] and references given there).
The critical ingredient in our case is a Wegner Estimate. To prove this estimate,
we use in an essential way that we work outside the spectrum σ(H0,Γc). In fact,
the estimate blows up when we approach σ(H0,Γc).

From the multiscale bounds not only pure point spectrum follows but
also dynamical localisation (see Damanik–Stollmann [3] or [26]).

We also consider the case −M1 = M2 = ∞, in other words a Γ-trimmed
potential on Zd = Zd1 × Zd2 . Again we use multiscale analysis outside Σ0 for
high enough disorder, which implies uniform exponential decay of the Green
function and existence of pure point spectrum.
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Inside a subset E of Σ0 we prove that the Green function GE+iε(x, y) is
not only not uniformly exponentially decaying, but that for x /∈ Γ even

sup
εր0

∑

y∈Zd

|GE+iε(x, y)| = ∞ . (3)

Under appropriate conditions, we even have E = Σ0.
Consequently, we have a ‘phase transition’ at Σ0 = σ(H0,Γc) which man-

ifests itself in the behaviour of the Green function.
For the Anderson model (with full randomness), it is expected that in

higher dimension there is a mobility edge, namely a transition from pure point
spectrum to absolutely continuous spectrum depending on the energy range
and the strength of the disorder. All that is rigorously known (on Zd) is the
existence of pure point spectrum (see, for example, Aizenman–Warzel [2] or
Kirsch [15]). However, on the Bethe tree Klein [17] proved the existence of
absolutely continuous spectrum (see also Klein–Sadel [19], Aizenman–Warzel
[1], Froese et al. [9]).

There are random Schrödinger operators with decaying randomness for
which a mobility edge is known to exist (see Krishna [22], Kirsch et.al. [10,13],
and Jaksic-Last [11]. These models are not ergodic. However, the models we
consider here are either ergodic in Zd1-direction (for the strip) or even ergodic
with respect to a d-dimensional sub-lattice.

The systems we consider are about the simplest wave guides possible. We
expect that the localisation results we have in this paper can be extended to
more complicated wave guide systems using essentially the same technique. We
also expect the delocalisation results to hold more generally, assuming there are
big enough regions without (random) potential. However, such results would
presumably require refined methods.

2. Setup

We consider quantum systems (wave guides) on X ⊂ Zd = Zd1 × Zd2 .
For p = (p1, . . . , pd) ∈ (N \ {1})d (periods) set (unit cell)

C0 = {x ∈ Zd | 0 ≤ xν ≤ pν − 1 for all ν} (4)

By eν we denote the standard basis of Zd. The lattice L and the subset
LM1M2

are defined by

L :=
{ d∑

ν=1

iν pνeν | iν ∈ Z
}

(5)

and LM1M2
:=

{ d∑

ν=1

iν pνeν | M1 ≤ iν < M2 for ν ≤ d1

}
, (6)

with M1,M2 ∈ Z,M1 < M2. In this paper, we always assume that d1, d2 > 0.
Then, we define ‘cubes’ XM1M2

by ‘periodising’ C0:

XM1,M2
:= C0 + LM1M2

(7)
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and

X∞ := C0 + L . (8)

Informally, we consider X∞ as XM1M2
with M1 = −∞,M2 = ∞.

Thus, XM1M2
is a strip (‘waveguide’) of restricted width in d1 directions

and unconfined in d2 directions, X∞ is (for the moment) just a complicated
expression for Zd.

Sometimes we omit the indices M1,M2 and ∞ if they are clear from
the context or if they are irrelevant. For simplicity of arguments and, in fact,
without loss of generality we assume that M2 − M1 is even.

The discrete Laplacian H0 on X∞ = Zd is given by:

H0 u(n) :=

d∑

ν=1

(
u(n + eν) + u(n − eν)

)
(9)

When we restrict H0 to subsets of Zd we have to impose boundary conditions.
In the following, we will most of the time work with either ‘simple’ boundary
conditions or with ‘periodic’ boundary conditions.

Definition 2.1. If Λ is a subset of Zd, then the operator H0,Λ on ℓ2(Λ) given
by

H0,Λu(n) =

d∑

ν=1

(
χΛ(n + eν)u(n + eν) + χΛ(n − eν)u(n − eν)

)
(10)

is called the Laplacian on Λ with simple boundary conditions.
Here

χΛ(n) =

{
1, for n ∈ Λ;
0, otherwise.

(11)

Definition 2.2. Suppose the box Λ ⊂ Zd is given by

Λ = {x ∈ Zd | qν ≤ xν ≤ pν for ν = 1, . . . , d′} (12)

for some d′ ≤ d, then we call the operator HΛ
0 defined by

HΛ
0 u(x) =

d∑

ν=1

(
u(N+

ν x) + u(N−
ν x)

)
(13)

where

N+
ν x =

{
x + eν , if x + eν ∈ Λ;
x − (pν − qν)eν , if x + eν /∈ Λ.

(14)

N−
ν x =

{
x − eν , if x − eν ∈ Λ;
x + (pν − qν)eν , if x − eν /∈ Λ.

(15)

the Laplacian on Λ with periodic boundary conditions.

For the operator H0 on XM1M2
, we impose periodic boundary conditions.

Now, we define the set Γ of ‘active sites’, i.e. the sites where the potential
Vω may be nonzero. The active sites inside C0 are denoted by Γ0, with

∅ �= Γ0 � C0 (16)
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and

Γ := Γ0 + LM1M2
(17)

where we include again the case −M1 = M2 = ∞.

Example 2.3. In the following examples X may be either XM1M2
or X∞ = Zd

1. For some ν ≤ d1

Γ = {x ∈ X | xν = 0} (18)

2. Γ = {x ∈ X | x1 = 0 or x2 = 0 or . . . or xd1
= 0}

3. For some results, we can deal with the following less restrictive model

∅ �= Γ ⊂ {x ∈ X | x1 = 0 or x2 = 0 or . . . or xd1
= 0} (19)

In this article, we investigate spectral properties of operators H on X of
the form:

H u(n) = H0 u(n) + V (n)u(n) (20)

where the potential V is supported by Γ, i.e. V (n) = 0 for n /∈ Γ.
Most of the time we suppose that V is a random potential with indepen-

dent, identically distributed random variables Vω(γ), γ ∈ Γ, but some of our
results are independent of such an assumption.

3. Results

We prove localisation under fairly weak assumptions on Γ.

Theorem 3.1. Suppose that ∅ �= Γ �= X . Assume that the random variables
Vω(n), n ∈ Γ are independent with a common distribution P0 which has a
bounded density ρ (with respect to Lebesgue measure) with compact support.

If I ⊂ {E | dist(E, σ(H0,Γc) ≥ γ}, then Hω has pure point spectrum
inside I with exponentially decaying eigenfunctions if ‖ρ‖∞ is small enough,
i.e. if ‖ρ‖∞ ≤ cγ .

Remark 3.2. Observe that ‖ρ‖∞ small means high disorder.

The multiscale analysis gives a form of localisation which is more than
merely pure point spectrum, namely dynamical localisation. Dynamical local-
isation appears in various forms (for a detailed discussion see, for example,
[18]), we use it in the following form which we take from [26].

Definition 3.3. For a self-adjoint operator H and an interval I denote by PI(H)
the spectral projection for H on I.

We say that the random operator H satisfies dynamical localisation in
the energy interval I if for any p > 0

E

[
sup
t>0

∥∥∥|x|p| e−iHt PI(H)ϕ
∥∥∥
]

< ∞ (21)

for any compactly supported ϕ.
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Corollary 3.4. Under the assumptions of Theorem 3.1, there is dynamical local-
isation in I.

That dynamical localisation follows from multiscale analysis is proved in
[3], see also [26].

The following result shows that Theorem 3.1 is not an empty statement.

Proposition 3.5. Under the assumptions of Theorem 3.1, there is an η > 0
such that

[inf Σ, inf Σ + η] ∩ σ(H0,Γc) = ∅ (22)

and [sup Σ − η, sup Σ] ∩ σ(H0,Γc) = ∅ (23)

Theorem 3.1 and Corollary 3.4 are proved in Sect. 5. The proof of Propo-
sition 3.5 is given in Sect. 4. These results reprove and extend previous results
in [5,6,16,23,24].

Now, we turn to a class of examples for which we can prove the existence
of absolutely continuous spectrum.

Definition 3.6. We call Γ as in (16) and (17) a single layer set if Γ ⊂ G × Zd2

with

∅ �= G ⊂ G0 = {x ∈ X | x1 = 0 or x2 = 0 or . . . or xd1
= 0} (24)

We call Γ a strict single layer set if Γ = G0 × Zd2 .

Definition 3.7. We set

L :=
d1ą

ν=1

{1, 2, . . . , pν − 1} (25)

and for L := (ℓ1, . . . , ℓd1
) ∈ L we set

eL := 2
( d1∑

ν=1

cos
(πℓν

pν

))
(26)

E := {eL | L ∈ L} + [−2d2, 2d2] (27)

Proposition 3.8. Consider the operator H0 on XM1,M2
, a set Γ ⊂ XM1,M2

and
the operator H0,Γc , the restriction of H0 to Γc (with simple boundary condi-
tions).

1. If Γ is a single layer set, then E ⊂ Σ0 := σ(H0,Γc).
2. If Γ is a strict single layer set, then E = Σ0

Theorem 3.9. Consider H0 on XM1M2
with M1,M2 finite, M2 − M1 even and

with periodic boundary conditions. Assume that Γ is a single layer set.
If W is an arbitrary potential vanishing outside Γ, then

E ⊂ σac(H0 + W ) . (28)

In particular, if Γ is a strict single layer set, then

Σ0 ⊂ σac(H0 + W ) . (29)
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Theorem 3.9 applies in particular to Γ-trimmed random potential as in
Theorem 3.1. Thus, for such a random potential there is an energy region
with pure point spectrum and a region with absolutely continuous spectrum.
Consequently, there exists a mobility edge.

The proof of Theorem 3.9 is contained in Sect. 6.
Unfortunately, the proof of Theorem 3.9 does not work for the case

−M1 = M2 = ∞, i.e. for X = Zd. However, for this case we can at least
show, that both the fractional moment method and the multiscale analysis
cannot work. In fact, the spectral values in E belong to ‘extended states’ in an
informal sense.

Let Γ ⊂ X∞ be a one layer set and Vω be a random potential on Γ
satisfying the assumptions of Theorem 3.1. Denote by GVω

E+iζ(x, y) the Green

function (i.e. the kernel of the resolvent (Hω − E − iζ)−1 with ζ > 0).
Then, we show

Theorem 3.10. We assume X = Zd and Γ is a single layer set.

1. If E /∈ σ(H0,Γc), then for high enough disorder

lim sup
ζց0

|GVω

E+iζ(x, y)| ≤ C e−m|x−y| (30)

P-almost surely.
2. If E ∈ E, then

lim sup
ζց0

∑

y∈Zd

|GVω

E+iζ(x, y)| = ∞ (31)

for all x /∈ Γ and all ω.

Part 2 of Theorem 3.10 is actually a deterministic result, and it holds for
any potential vanishing outside Γ.

We prove this theorem in Sect. 7.

4. The Random Operator and Its Spectrum

In this section, we consider operators with random potential. To emphasise
this, we write

Hω := H0 + Vω . (32)

Hypothesis 4.1. We suppose that the potentials Vω(γ), γ ∈ Γ are i.i.d. with a
common distribution P0. We assume that the support S of P0 is compact.

The assumption that S is compact can be relaxed considerably but we
do not bother to do so.

We denote the corresponding probability space by (Ω,F , P) which can

and will be taken to be
(
SΓ,

⊗
γ∈Γ B(S),

⊗
γ∈Γ P0

)
.

We write the lattice L as L = L1 × L2 with L1 ⊂ Zd1 and L2 ⊂ Zd2 and
points x in X as x = (x1, x2) with xi ∈ Zdi .
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We define ‘shift’ operators Tj , j ∈ L′ := L2 on (Ω,F , P) by

Tjω(x1, x2) := ω(x1, x2 − j) (33)

It is easy to see that the shift Tj is measure preserving, i.e. P(Tj
−1A) =

P(A) for every A ∈ F .
The following result tells us that the family {Tj}j∈L′ is ergodic:

Proposition 4.2. If A ∈ F is invariant under {Tj}j∈L′ , i.e. Tj
−1A = A for all

j ∈ L′, then either P(A) = 0 or P(A) = 1.

This result can be found in [7], for example.
Define for j ∈ L′ the shift operator

Uju(x1, x2) := u(x1, x2 − j) , (34)

for (x1, x2) ∈ X .
The operators Uj are unitary on ℓ2(X ); moreover, the operators Hω are

ergodic in the sense

HTjω = UjHωU∗
j . (35)

with ergodic Tj by Proposition 4.2
It follows (see, for example, [14]):

Proposition 4.3. 1. The spectrum σ(Hω) is non-random (almost surely).
2. The same is true for the measure theoretic parts of the spectrum (the

absolutely continuous part σac(Hω), the singular continuous part, etc.).
3. There is (almost surely) no discrete spectrum.

Definition 4.4. We denote by Σ the almost sure spectrum of Hω, i.e.
Σ = σ(Hω) P-almost surely.

We now investigate the spectrum (as a set).

Definition 4.5. A function W : X ∈ R is called an admissible potential (with
respect to P0) if

W (x) ∈ S = suppP0 if x ∈ Γ,

W (x) = 0 otherwise.

We denote the set of admissible potentials by A.

Remark 4.6. Taking
(
Ω,F , P

)
=

(
(S)Γ,

⊗

γ∈Γ

B(S),
⊗

γ∈Γ

P0

)
(36)

there is a one-to-one correspondence τ between Ω and the set A of admissible
potentials, namely τ(ω)(n) =

∑
γ∈Γ ωγδγ n.

We may therefore identify Ω and A.

Theorem 4.7. 1. If W is an admissible potential, then σ(H0 + W ) ⊂ Σ.
2. We have

Σ =
⋃

W∈A

σ(H0 + W ) . (37)
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Proof. 1. For E ∈ σ(H0+W ), there exists a Weyl sequence of functions ϕn with
compact (hence finite) support; more precisely we may suppose that ‖ϕn‖ = 1
and

‖(H0 + W − E)ϕn‖ <
1

n
(38)

Set Sn = suppϕn which is a finite set. By the Borel–Cantelli lemma, there is
a vector jn ∈ L′ such that

sup
k∈Sn

|W (k) − Vω(k + jn) | <
1

n
(39)

With ψn(x) = ϕn(x + jn), we therefore get

‖ (Hω − E)ψn ‖ <
2

n
, (40)

thus E ∈ σ(Hω).
2. Since the set A has probability one (in the sense of Remark 4.6)

Σ ⊂
⋃

W∈A

σ(H0 + W ) . (41)

This together with 1. proves the theorem. �

Set Va = aχΓ then Va is an admissible potential if a ∈ suppP0. We define
Ha = H0 + Va and set Emin(a) = inf σ(Ha) and Emax(a) = supσ(Ha).

Theorem 4.8. If suppP0 = [a, b], then

Σ = [Emin(a), Emax(b)] . (42)

Proof. Since Vx are admissible for all x ∈ [a, b] and due to continuity, we have
Σ ⊃ [Emin(a), Emax(b)].

Suppose now, that W is an admissible potential then by monotonicity

Ha ≤ H0 + W ≤ Hb .

So, σ(H0 + W ) ⊂ [inf σ(Ha), sup σ(Hb)]. �

We will have a closer look at the operators Ha. Let us denote by H0,Γ

and H0,Γc the operator H0 restricted to ℓ2(Γ) and ℓ2(Γc), respectively, with
simple boundary conditions.

Proposition 4.9. For any a ∈ R

inf σ(Ha) ≤ inf σ(H0,Γc) (43)

and supσ(Ha) ≥ supσ(H0,Γc) . (44)

Moreover, if a > 0, then

supσ(Ha) > supσ(H0,Γc) (45)

Remark 4.10. For a < 0 we have inf σ(Ha) < inf σ(H0,Γc).
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Proof. Take ϕ ∈ ℓ2(Γc) with ‖ϕ‖ℓ2(Γc) = 1 and define ϕ̃ ∈ ℓ2(X ) by

ϕ̃(n) =

{
ϕ(n), for n ∈ Γc;

0, otherwise.
(46)

Then,

〈ϕ,H0,Γ ϕ〉ℓ2(Γc) = 〈ϕ̃,Haϕ̃)〉ℓ2(X ) . (47)

From (47), the equalities (43) and (44) follow by the Min-Max-Principle.
To prove the strict inequality (45), we show that supHa is strictly increas-

ing with a.
The operator Ha is periodic; therefore, Ea = supσ (Ha) is given by the

supha where ha is the operator Ha restricted to the periodic cell C0 with
periodic boundary conditions. The corresponding eigenfunction ψa is strictly
positive.

By the Hellmann–Feynman theorem

d

da
Ea =

∑

j∈C0∩Γ

|ψa(j)|2 > 0 , (48)

hence Ea < Eb if a < b. This proves 45. The inequality in Remark 4.10 is
proved in a similar way. �

Now, we consider the case that Γ = G × Zd2 . In this case, the operator
Ha separates in the following way.

Definition 4.11. The space X splits in a part Z ⊂ Zd1 and Zd2 , namely

X∞ = Zd1 × Zd2 (49)

XM1M2
= Z × Zd2 (50)

We denote the Laplacian on ℓ2(Z) (possibly with periodic boundary

conditions) by H
(1)
0 and the Laplacian on ℓ2(Zd2) by H

(2)
0 . We also set

H
(1)
a = H

(1)
0 + aχG.

Then

Ha =
(
H(1)

a ⊗ 1
Zd2

)
⊕

(
1Z ⊗ H

(2)
0

)
(51)

Consequently

σ(Ha) = σ(H(1)
a ) + [−2d2, 2d2] . (52)

This proves the following Corollary:

Corollary 4.12. If Γ = G × Zd2 and suppP0 = [a, b] then

Σ = [inf σ(H(1)
a ), sup σ(H

(1)
b )] + [−2d2, 2d2] (53)

The above consideration also allows us to prove Proposition 3.8.

Proof. (Proposition 3.8) Part 1. follows by computation. Part 2. follows from
(52) �
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5. Localisation

In this section, we prove pure point spectrum with exponentially decaying
eigenfunction for energies E /∈ σ(H0,ΓC ) for high enough disorder.

For the (L-periodic) set Γ of ‘active’ sites, we merely assume that Γ �= ∅.
We may also assume that Γ �= C0, since otherwise Γ is the whole space, a case
which is known, of course.

In the following, we consider the case X = X∞, at the end of this section
we comment on the case XM1M2

.
We will use multiscale analysis (see [15] and references given there). Dur-

ing the proof we need to consider boxes Λ which are unions of shifted C0. Recall
that the unit cell C0 is defined by:

C0 = {x ∈ Zd | 0 ≤ xν ≤ pν − 1 for all ν} (54)

Definition 5.1. We call a set Λ ⊂ Zd a C0-box, if

Λ = {x ∈ Zd | Lνpν ≤ xν ≤ L′
νpν − 1 for all ν} (55)

One of the crucial ingredients of (most versions of) multiscale analysis is
the Wegner–Estimate. To prove this, we need the following result. By HΛ

ω , we
denote the operator Hω = H0 +Vω restricted to ℓ2(Λ) with periodic boundary
conditions.

Proposition 5.2. Suppose Λ is a C0-cube and E /∈ σ(H0,Γc) and

HΛ
ω ψ = Eψ (56)

then

‖ψ‖ℓ2(Λ) ≤
C

dist
(
E, σ(H0,Γc)

) ‖ψ‖ℓ2(Λ∩Γ) (57)

with a constant C which is independent of Λ and E.

Proof. Set Λ1 = Λ ∩ Γc and Λ2 = Λ ∩ Γ. We write ℓ2(Λ)

ℓ2(Λ) = ℓ2(Λ1) ⊕ ℓ2(Λ2) (58)

Accordingly, we may write the operator Hω in block matrix form:

HΛ
ω =

(
HΛ1

0 T

T ∗ HΛ2

0 + Vω

)
(59)

The operator T : ℓ2(Λ2) → ℓ2(Λ1) ‘restores’ the links between Λ2 and Λ1.
The eigenvalue equation (56) reads

(
HΛ1

0 T

T ∗ HΛ2

0 + Vω

) (
ψ1

ψ2

)
= E

(
ψ1

ψ2

)
(60)

So, in particular

(HΛ1

0 − E)ψ1 = −T ψ2 (61)
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Thus,

‖ψ‖ℓ2(Λ1) = ‖ψ1‖ (62)

≤ ‖(HΛ1

0 − E)−1‖ ‖T‖ ‖ψ2‖ (63)

Since for given m we have |T (n,m)| = 1 for at most 2d point n and T (n,m) = 0
otherwise, we conclude ‖T‖ ≤ 2d.

Since we consider periodic boundary conditions on Λ, we have

σ(HΛ1

0 ) ⊂ σ(H0,Γc) (64)

as any eigenfunction on Λ can be periodically extended to an eigenfunction on
X . �

Now we turn to the Wegner estimate. By N(A,E) we denote the number
of eigenvalues of the operator A up to E.

Theorem 5.3. If dist
(
E, σ(H0,Γc)

)
≥ γ and 0 ≤ ε ≤ 1

2γ, then

E
(
N

(
Hω(Λ), E + ε

)
− N

(
Hω(Λ), E − ε

))
≤

C

γ
‖ρ‖∞ ε |Λ| (65)

where |Λ| denote the volume (number of points) of Λ.

Proof. The proof is a combination of the proofs from [15] and [12]. We sketch
the main ideas. We use the abbreviation H = Hω(Λ).

Let g be a monotone C∞-function with 0 ≤ g(t) ≤ 1, g(t) = 0 for t ≤ −2ε
and g(t) = 1 for t ≥ 2ε.

We obtain

N(H,E + ε) − N(H,E + ε) ≤ tr g(H − E + 2ε) − tr g(H − E − 2ε) (66)

=

∫ E+2ε

E−2ε

tr g′(H − λ) dλ (67)

Let En denote the eigenvalues of Hω(Λ) labelled in increasing order.
These eigenvalues depend on the values vj := Vω(j), j ∈ Λ2.

Thus, we may consider

∑

j∈Λ2

∂

∂vj

tr g(H − λ) =
∑

n

∑

j∈Λ2

∂

∂vj

g(En − λ) (68)

=
∑

n

g′(En − λ)
∑

j∈Λ2

∂En

∂vj

(69)

≥
∑

n

g′(En − λ)
∑

j∈Λ2

|ψn(j)|2 (70)

≥ C ′ dist
(
E, σ(H0,Γc)

)
tr g′(H − λ) (71)

where ψn is a normalised eigenfunction of H with eigenvalue En. Above we
used the Hellmann–Feynman theorem and, in the final step, Proposition 5.2.
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Summarising we proved

E
(
N(H,E + ε) − N(H,E + ε)

)
(72)

≤
C ′′

dist
(
E, σ(H0Γc)

)
∑

j∈Λ2

∫ E+2ε

E−2ε

E
( ∂

∂vj

tr g(H − λ)
)

dλ (73)

Suppose suppP0 ⊂ [a, b] and denote by H(vj = c) the operator H with
Vj replaced by the value c, then

∫
∂

∂vj

tr g(H − λ)ρ(vj) dvj (74)

≤ ‖ρ‖∞

(
tr g

(
H(vj = b) − λ

)
− tr g

(
H(Vj = a) − λ

))
≤ ‖ ρ‖∞ (75)

We used that changing the potential at one site j is a rank one perturbation
and 0 ≤ g(λ) ≤ 1.

Performing the integrals over the vk, k �= j gives the desired result. �

Once we have the Wegner estimate, the multiscale analysis follows the
usual path. We need an initial length scale estimate and the induction step
over growing length scales.

The initial length scale estimate follows directly from the Wegner esti-
mate Theorem 5.3. In fact, as long as we are away from the spectrum of H0,Γc ,
we can make the right hand side of (65) as small as we like by taking ‖ρ‖∞

small. This corresponds to high disorder. Using a Combes—Thomas estimate,
this allows us to prove the initial scale estimate. For details see Section 11.1
in [15].

The induction step follows the lines in [15] sections 9 and 10. The only
difference being that we deal with periodic boundary conditions while [15] uses
simple boundary conditions.

If X = XM1M2
, we start the induction with a cube of the form:

Λ = {x ∈ XM1M2
| Lνpν ≤ xν ≤ L′

νpν − 1 for ν = d1 + 1, . . . , d1 + d2} (76)

Corollary 3.4 follows from the work [3] of Damanik and Stollmann.

6. Absolutely Continuous Spectrum

In this section we consider a special case of the above operators.
We start with the following observation:

Proposition 6.1. Assume Γ = G × Zd2 and suppose the (otherwise arbitrary)
potential W is concentrated on Γ. If there exists a polynomially bounded solu-
tion ψ of

H
(1)
0 ψ = eψ (77)

which vanishes on G, then

e + [−2d2, 2d2] ⊂ σ(H0 + W ) (78)
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Remark 6.2. H
(1)
0 and H

(2)
0 were defined in Definition 4.11.

Proof. Any η ∈ [−2d2, 2d2] is of the form η = 2
∑d2

ν=1 cos(κν) and ϕ(x) =∏d2

ν=1 sin(κνxν) is a (bounded) function solving

H
(2)
0 ϕ = η ϕ . (79)

This can be verified by applying the addition theorem for the sinus.
Consequently, Ψ(x, y) := ψ(x)ϕ(y) is a bounded solution to

H0 Ψ = (e + η)Ψ . (80)

Since ψ vanishes on G, Ψ vanishes on Γ, so

(H0 + W )Ψ = H0 Ψ = (e + η)Ψ . (81)

Thus, e + η is a generalised eigenvalue of H0 + W . By Sch’nol’s theorem any
generalised eigenvalue belongs to the spectrum (see [25], Section C4 or [15],
Section 7.1). �

We discuss a class of examples for which Proposition 6.1 applies.
We look at X or at the strip XM1M2

. In the latter case, we impose periodic
boundary conditions and take M2 − M1 is even. This way we avoid to discuss
various cases separately.

For L = (ℓ1, . . . , ℓd1
), ℓν ∈ {1, 2, . . . , pν − 1} we set

ΦL(x1, . . . , xd1
) :=

d1∏

ν=1

sin
(πℓν

pν

xν

)
(82)

Lemma 6.3. Under condition (24), the function ΦL(x) is a solution to

(H
(1)
0 + W )ψ = 2

( d2∑

ν=1

cos
(πℓν

pν

xν

))
ψ (83)

and

ΦL(x) = 0 for x ∈ G (84)

Proof. Again by applying addition theorems and the fact that ΦL vanishes on
G0, hence on G, we see that (83) holds. Moreover, since M2 − M1 is even ΦL

satisfies periodic boundary conditions. �

Now, we are ready to prove Theorem 3.9.

Proof. (Theorem 3.9) Take E ∈ E , then E = eL + η for some η ∈ [−2d2, 2d2].
Denote by EL the (one-dimensional) subspace of ℓ2(Z) generated by the eigen-
function ΦL.

The (closed) subspace hL = EL ⊗ ℓ2(Zd2) of ℓ2(X ) is invariant under the
operator H0 + W and restricted to hL the operators H0 + W and H0 agree.

Consequently, H0 + W on hL is unitarily equivalent to H
(2)
0 + eL on ℓ2(Zd2),

an operator with purely absolutely continuous spectrum.
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7. Absence of Exponential Localisation

We start with a general observation. Let W be an arbitrary potential and
denote by GW

z (x, y) the Green’s function for H := H0 + W , i.e. the kernel of
the operator (H0 + W − z)−1.

Theorem 7.1. If for some E ∈ R

H ψ =
(
H0 + W

)
ψ = E ψ (85)

for a bounded function ψ, then for all x ∈ Zd with ψ(x) �= 0

lim inf
ζց0

ζ
∑

y∈Zd

|GW
E+iζ(x, y)| > 0 , (86)

in particular

sup
ζց0

∑

y∈Zd

|GW
E+iζ(x, y)| = ∞ . (87)

Observe that |GE+iζ(x, y)| ≤ C
η

e−cη‖x−y‖ by the Combes–Thomas esti-

mate (see, for example, [15]). Thus, for any ζ > 0
∑

y∈Zd

|GW
E+iζ(x, y)| < ∞ . (88)

Proof. Take ε > 0 arbitrary and assume that |ψ(x)| ≤ A < ∞.
Let

ΛL = {n ∈ Zd | |nν | ≤ L for ν = 1, . . . , d}

and ∂ ′ΛL = {n ∈ Zd | |nν − L| ≤ 2 for some ν}

Denote by χL the characteristic function of ΛL and set ψL := χL ψ.
We compute

H ψL(x) = χL(x)
(
Hψ

)
(x) +

∑

|j|=1

ψ(x + j)
(
χL(x + j) − χL(x)

)

= E ψL(x) +
∑

|j|=1

ψ(x + j)
(
χL(x + j) − χL(x)

)
.

It follows that for L big enough

ψ(x) =
∑

y∈Zd

GW
E+iζ(x, y)

( ∑

|e|=1

ψ(y + e)
(
χL(y + e) − χL(y)

)
− iζψ(y)χL(y)

)

Observe that χL(x + j) − χL(x) (with |j| = 1) vanishes outside ∂ ′ΛL. Conse-
quently,

|ψ(x)| ≤ 2dA
∑

y∈∂ ′ΛL

|GW
E+iζ(x, y)| + ζ

∑

y∈Zd

|GW
E+iζ(x, y)| (89)



W. Kirsch et al. Ann. Henri Poincaré

Since
∑

y∈Zd |GW
E+iζ(x, y)| < ∞ for ζ > 0, we can choose L (depending on

ζ > 0) such that 2dA
∑

y∈∂ ′ΛL
|GW

E+iζ(x, y)| < ε Then,

|ψ(x)| ≤ ζ
∑

y∈Zd

|GW
E+iζ(x, y)| + ε (90)

Now suppose that lim infζր0 ζ
∑

y∈Zd |GW
E+iζ(x, y)| = 0 Then, as ε was arbi-

trary (90) implies ψ(x) = 0 which is a contradiction. �

We apply the above theorem to our model.

Theorem 7.2. Assume Condition (24) holds and let W be an admissible poten-
tial on X∞.

Then, for each x0 ∈ Zd and for all E ∈ E

sup
x∈x0+C0

sup
ζց0

∑

y∈Zd

|GW
E+iζ(x, y)| = ∞ (91)

Proof. Take E ∈ E , then E = eL + η with

η = 2

d2∑

k=1

cos(πκk) (92)

for some L and some κk. It follows that

ψ(x1, . . . , xd1
, y1, . . . , yd2

) :=

d1∏

j=1

sin(
πℓj

pj

xj)

d2∏

k=1

eiπκkyk (93)

vanishes on Γ and is a solution to

H0ψ =
(
H0 + W

)
ψ = E ψ , (94)

with ||ψ||∞ ≤ 1. An application of Theorem 7.1 gives the result. �
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Mathematics France, Paris (2008). With an Appendix by Frédéric Klopp

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


W. Kirsch et al. Ann. Henri Poincaré
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